ONE TIME EXIT SCHEME

							1	Control No. 1997
USN								10EC73
	 	1	l		l	i		St. A.

Seventh Semester B.E. Degree Examination, April 2018 Power Electronics

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

a. Explain briefly different types of power electronic circuits.

(06 Marks)

b. Discuss peripheral effects of power electronics equipments.

(06 Marks)

- c. Explain the SCR characteristics (V-I) with the help of a circuit connection. Also define holding current and latching current. (08 Marks)
- 2 a. Compare power MOSFET and bipolar junction transistor.

(05 Marks)

b. Explain the proportional and anti saturation base drive control methods.

(06 Marks)

- c. For a BJT circuit shown in Fig.Q2(c), if $V_{BE(sat)} = 1.5V$, $V_{CE(sat)} = 1.2V$, $\beta = 25V$, $V_{CC} = 100V$, $R_C = 10~\Omega$ and $R_B = 20~\Omega$, find (i) the minimum value of V_{BB} = required to ensure transistor saturation and (ii) the ON-state power loss P_T in the transistor. (05 Marks)
- d. Write a brief note on isolation of gate and base driver.

(04 Marks)

- a. With two transistor model explain switching action of thyristor. Derive an expression for anode current. (10 Marks)
 - b. For the circuit shown in Fig.Q3(b), $V_s = 200 \text{ V}$ with load resistance of $R = 5 \Omega$. The load and stray inductances are negligible and the thyristor is operated at a frequency of $f_s = 2 \text{ kHz}$. If the required $dv/dt = 100V/\mu s$ and the discharge current is to be limited to 100 A. Determine (i) the values of R_s and C_s (ii) the snubber loss and (iii) the power rating of the snubber resistor. (10 Marks)

- 4 a. With the necessary circuit and waveforms, explain the principle of operation of single phase full converter with R-L load. Derive an expression for the RMS and average output voltage.

 (08 Marks)
 - b. With a neat circuit diagram and waveforms, explain the principle of operation of 1φ dual converter, with and without circulating current.
 - c. Explain the role played by the free wheeling diode in converters with R-L load. (05 Marks)

PART - B

- 5 a. Distinguish between natural and forces communication with examples. (04 Marks)
 - b. With neat circuit diagram and waveform explain the working of complimentary commutation. (08 Marks)
 - c. For the Auxiliary communication circuit shown below Fig.Q5(c), compute the value of commutation capacitor 'C' and commutating inductor 'R' for the following data:
 E_{dc} = 50 V, I_{L(max)} = 50 A, toff of SCR₁ = 30 μs, chopping frequency f = 500 Hz and the load voltage variation required is 10% to 100%. Assume 50% tolerance on turn-off time of SCR₁.
- 6 a. Describe the 1φ full wave AC voltage controller with resistive load. Derive the equation for the average output voltage and RMS output voltage. (10 Marks)
 - b. Find the performance parameters of a 1 ϕ FW controller with R-L load. The input rms is $V_s = 120$ V, 60 Hz. The load is such that L = 6.5 mH and R = 2.5 Ω . The delay angles of the thyristors are equal $\alpha_1 = \alpha_2 = \pi/2$. Determine, if $\beta = 220^\circ$.
 - (i) the conduction angle of thyrostor T_1 , δ
 - (ii) the rms output voltage V_0
 - (iii) the rms output current I₀
 - (iv) the average current of the thyristor I_A.
 - (vi) the input PF.

(10 Marks)

- 7 a. Explain the principle of step-down chopper. Derive the average, rms voltage and the output power for it. (06 Marks)
 - b. The dc converter has $R = 10\Omega$ and the input voltage is V = 220V. When the converter switch remains on its voltage drop is $V_{ch} = 2V$ and the chopping frequency is f = 1 kHz. If the duty cycle is 50% determine:
 - (i) the average o/p voltage V_0
 - (ii) the rms o/p voltage v_o
 - (iii) the converter efficiency
 - (iv) the effective input resistance R_i of the converter.

(08 Marks)

- c. Explain the operation of a step down chopper with R-L load. Also derive an expression of peak-peak output ripple current. (06 Marks)
- 8 a. Explain single phase half bridge inverter with R-load, with necessary circuit diagram and waveforms. Derive the equation for rms output voltage. (08 Marks)
 - b. Explain the performance parameters of inverters.

(08 Marks)

c. Give the classification of inverter based on the connection of thyristors and commutating components. (04 Marks)

* * * * *

Date: 16/04/2018 Time: 9.30am to 12.30 pm

Seventh Semester B.E. Degree Examination, April 2018 Power Electronics

Q. No. 5 c.

For the Auxiliary communication circuit shown below Fig.Q5(c), compute the value of commutation capacitor 'C' and commutating inductor 'R' for the following data:

 E_{dc} = 50 V, $I_{L(max)}$ = 50 A, t_{off} of SCR₁ = 30 μ s, chopping frequency f = 500 Hz and the load voltage variation required is 10% to 100%. Assume 50% tolerance on turn-off time of SCR₁.

(08 Marks)

